|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import igraph as ig
|
|
|
|
|
|
|
|
|
|
|
|
def split_neighbor_layer(g: ig.Graph, n: int) -> tuple[list[set[ig.Vertex]], list[set[ig.Vertex]]]:
|
|
|
|
layer_a: set[ig.Vertex] = set(g.vs.select(step=n))
|
|
|
|
layer_b: set[ig.Vertex] = set(g.vs.select(step=n+1))
|
|
|
|
|
|
|
|
layer_a_data: list[set[ig.Vertex]] = []
|
|
|
|
layer_b_data: list[set[ig.Vertex]] = []
|
|
|
|
|
|
|
|
select_next = lambda p: set(x for x in p.neighbors() if x['step'] == n + 1)
|
|
|
|
select_last = lambda p: set(x for x in p.neighbors() if x['step'] == n)
|
|
|
|
|
|
|
|
while len(layer_a) != 0:
|
|
|
|
side_a: set[ig.Vertex] = set()
|
|
|
|
side_b: set[ig.Vertex] = set()
|
|
|
|
|
|
|
|
point = layer_a.pop()
|
|
|
|
side_a.add(point)
|
|
|
|
|
|
|
|
while True:
|
|
|
|
nexts = set()
|
|
|
|
for x in side_a:
|
|
|
|
nexts.update(select_next(x))
|
|
|
|
if nexts == side_b:
|
|
|
|
break
|
|
|
|
side_b.update(nexts)
|
|
|
|
for x in nexts:
|
|
|
|
if x in layer_b:
|
|
|
|
layer_b.remove(x)
|
|
|
|
|
|
|
|
lasts = set()
|
|
|
|
for x in side_b:
|
|
|
|
lasts.update(select_last(x))
|
|
|
|
if lasts == side_a:
|
|
|
|
break
|
|
|
|
side_a.update(lasts)
|
|
|
|
for x in lasts:
|
|
|
|
if x in layer_a:
|
|
|
|
layer_a.remove(x)
|
|
|
|
|
|
|
|
layer_a_data.append(side_a)
|
|
|
|
layer_b_data.append(side_b)
|
|
|
|
|
|
|
|
assert len(layer_b) == 0
|
|
|
|
return layer_a_data, layer_b_data
|
|
|
|
|
|
|
|
|
|
|
|
def combine_split_result(data_a: list[set[ig.Vertex]], data_b: list[set[ig.Vertex]]) -> list[set[ig.Vertex]]:
|
|
|
|
result = []
|
|
|
|
|
|
|
|
while True:
|
|
|
|
data_a = list(filter(None, data_a))
|
|
|
|
data_b = list(filter(None, data_b))
|
|
|
|
data_a = sorted(data_a, key=lambda x: len(x))
|
|
|
|
data_b = sorted(data_b, key=lambda x: len(x))
|
|
|
|
|
|
|
|
if len(data_a) == 0:
|
|
|
|
assert len(data_b) == 0
|
|
|
|
break
|
|
|
|
|
|
|
|
# print(len(data_a))
|
|
|
|
# for x in data_a:
|
|
|
|
# print([y.attributes() for y in x])
|
|
|
|
# print(len(data_b))
|
|
|
|
# for x in data_b:
|
|
|
|
# print([y.attributes() for y in x])
|
|
|
|
# print('-' * 64)
|
|
|
|
|
|
|
|
if len(data_a[0]) <= len(data_b[0]):
|
|
|
|
union = data_a[0]
|
|
|
|
peer_unions = data_b
|
|
|
|
else:
|
|
|
|
union = data_b[0]
|
|
|
|
peer_unions = data_a
|
|
|
|
|
|
|
|
for peer_union in peer_unions:
|
|
|
|
mid = union & peer_union
|
|
|
|
if len(mid) == 0:
|
|
|
|
continue
|
|
|
|
result.append(mid)
|
|
|
|
for x in mid:
|
|
|
|
union.remove(x)
|
|
|
|
peer_union.remove(x)
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def split_layers(g: ig.Graph) -> list[list[set[ig.Vertex]]]:
|
|
|
|
assert min(g.vs['step']) == 0
|
|
|
|
layer_num = max(g.vs['step']) + 1
|
|
|
|
print(f'layer_num: {layer_num}')
|
|
|
|
|
|
|
|
layers = [{'up': [], 'down': []} for x in range(layer_num)]
|
|
|
|
layers[0]['up'] = [set(g.vs.select(step=0))]
|
|
|
|
layers[-1]['down'] = [set(g.vs.select(step=layer_num-1))]
|
|
|
|
|
|
|
|
for layer_num in range(layer_num - 1):
|
|
|
|
data_a, data_b = split_neighbor_layer(g, layer_num)
|
|
|
|
layers[layer_num]['down'] = data_a
|
|
|
|
layers[layer_num + 1]['up'] = list(filter(None, data_b))
|
|
|
|
|
|
|
|
for layer in layers:
|
|
|
|
assert set() not in layer['up']
|
|
|
|
assert set() not in layer['down']
|
|
|
|
up = set()
|
|
|
|
[up.update(x) for x in layer['up']]
|
|
|
|
down = set()
|
|
|
|
[down.update(x) for x in layer['down']]
|
|
|
|
assert up == down
|
|
|
|
|
|
|
|
result = []
|
|
|
|
for layer in layers:
|
|
|
|
result.append(combine_split_result(layer['up'], layer['down']))
|
|
|
|
|
|
|
|
for layer_num, layer in enumerate(result):
|
|
|
|
assert set() not in layer
|
|
|
|
layer_nodes = set()
|
|
|
|
[layer_nodes.update(x) for x in layer]
|
|
|
|
assert layer_nodes == set(g.vs.select(step=layer_num))
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def export_new_graph(g: ig.Graph, split_data: list[list[set[ig.Vertex]]]) -> ig.Graph:
|
|
|
|
ng = ig.Graph(sum([len(x) for x in split_data]))
|
|
|
|
|
|
|
|
g_index = 0
|
|
|
|
index_map = {}
|
|
|
|
for layer_index, unions in enumerate(split_data):
|
|
|
|
for union_index, nodes in enumerate(unions):
|
|
|
|
index_map[(layer_index, union_index)] = g_index
|
|
|
|
ng.vs[g_index]['step'] = layer_index
|
|
|
|
ng.vs[g_index]['codes'] = [x['code'] for x in nodes]
|
|
|
|
g_index += 1
|
|
|
|
|
|
|
|
for layer_index in range(len(split_data)-1):
|
|
|
|
curr_layer = split_data[layer_index]
|
|
|
|
next_layer = split_data[layer_index+1]
|
|
|
|
|
|
|
|
def union_neighbors(curr_union_index: int) -> list[int]:
|
|
|
|
next_union_indexes = set()
|
|
|
|
for node in curr_layer[curr_union_index]:
|
|
|
|
next_nodes = [x for x in node.neighbors() if x['step'] == layer_index+1]
|
|
|
|
for next_node in next_nodes:
|
|
|
|
for next_union_index in range(len(next_layer)):
|
|
|
|
if next_node in next_layer[next_union_index]:
|
|
|
|
next_union_indexes.add(next_union_index)
|
|
|
|
return sorted(next_union_indexes)
|
|
|
|
|
|
|
|
for union_index in range(len(curr_layer)):
|
|
|
|
union_a = index_map[(layer_index, union_index)]
|
|
|
|
edges = [(union_a, index_map[(layer_index+1, x)]) for x in union_neighbors(union_index)]
|
|
|
|
ng.add_edges(edges)
|
|
|
|
|
|
|
|
return ng
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
raw = ig.Graph.Read_Pickle('data/DAA7F30.pkl')
|
|
|
|
# raw = ig.Graph.Read_Pickle('data/DBAB4CC.pkl')
|
|
|
|
# raw = ig.Graph.Read_Pickle('main_combined.pkl')
|
|
|
|
print(raw.summary())
|
|
|
|
gg = export_new_graph(raw, split_layers(raw))
|
|
|
|
print(gg.summary())
|
|
|
|
# print(gg.isomorphic(raw))
|
|
|
|
|
|
|
|
gg.write_pickle('main_combined.pkl')
|
|
|
|
# gg.write_graphml('main_combined.graphml')
|