Browse Source

perf: algorithm of all_cases

master
Dnomd343 2 years ago
parent
commit
14bfb10533
  1. BIN
      all_cases/all
  2. 240
      all_cases/main.cc

BIN
all_cases/all

Binary file not shown.

240
all_cases/main.cc

@ -1,9 +1,6 @@
#include <iostream>
#include <vector>
#include <algorithm>
void load_basic_ranges(std::vector<uint32_t> &basic_ranges);
void build_basic_ranges(int n1, int n2, int n3, int n4, std::vector<uint32_t> &ranges);
#include <vector>
inline uint32_t binary_count(uint32_t bin) { // get number of non-zero bits
bin -= (bin >> 1) & 0x55555555;
@ -15,7 +12,7 @@ inline uint32_t binary_count(uint32_t bin) { // get number of non-zero bits
return bin & 0b111111;
}
uint32_t binary_reverse(uint32_t &bin) { // reverse binary every 2-bits
inline uint32_t binary_reverse(uint32_t bin) { // reverse binary every 2-bits
bin = ((bin << 16) & 0xFFFF0000) | ((bin >> 16) & 0x0000FFFF);
bin = ((bin << 8) & 0xFF00FF00) | ((bin >> 8) & 0x00FF00FF);
bin = ((bin << 4) & 0xF0F0F0F0) | ((bin >> 4) & 0x0F0F0F0F);
@ -23,9 +20,9 @@ uint32_t binary_reverse(uint32_t &bin) { // reverse binary every 2-bits
}
bool check_case(uint32_t head, uint32_t range) { // check whether the case is valid
uint32_t status = 0b110011 << head; // fill 2x2 block
uint32_t mask = 0b110011 << head; // fill 2x2 block
for (int addr = 0; range; range >>= 2) { // traverse every 2-bits
while (status >> addr & 0b1) {
while (mask >> addr & 0b1) {
++addr; // search next not filled block
}
switch (range & 0b11) {
@ -34,235 +31,128 @@ bool check_case(uint32_t head, uint32_t range) { // check whether the case is va
if (addr > 19) { // invalid address
return false;
}
status |= 0b1 << addr; // fill 1x1 block
mask |= 0b1 << addr; // fill 1x1 block
break;
case 0b10: // 2x1 block
if (addr > 15 || status >> (addr + 4) & 0b1) { // invalid address
if (addr > 15 || mask >> (addr + 4) & 0b1) { // invalid address
return false;
}
status |= 0b10001 << addr; // fill 2x1 block
mask |= 0b10001 << addr; // fill 2x1 block
break;
case 0b01: // 1x2 block
if (addr > 18 || (addr & 0b11) == 0b11 || status >> (addr + 1) & 0b1) { // invalid address
if (addr > 18 || (addr & 0b11) == 0b11 || mask >> (addr + 1) & 0b1) { // invalid address
return false;
}
status |= 0b11 << addr; // fill 1x2 block
mask |= 0b11 << addr; // fill 1x2 block
break;
}
}
return true;
}
void find_all_cases(std::vector<uint64_t> &all_cases) {
std::vector<uint32_t> basic_ranges, basic_rev_ranges;
load_basic_ranges(basic_ranges);
for (uint32_t range : basic_ranges) {
basic_rev_ranges.emplace_back(binary_reverse(range));
}
all_cases.clear();
for (uint32_t head = 0; head < 16; ++head) { // address for 2x2 block
if ((head & 0b11) == 0b11) { // aka (head % 4 == 3)
continue;
}
uint64_t prefix = int64_t(head) << 32;
for (uint32_t range : basic_rev_ranges) { // combine 2x2 address and range
if (check_case(head, range)) {
// TODO: emplace with range_rev
all_cases.emplace_back(prefix | range);
}
}
}
}
void load_basic_ranges(std::vector<uint32_t> &basic_ranges) { // load basic ranges
basic_ranges.clear();
for (int n = 0; n <= 7; ++n) { // number of 1x2 and 2x1 block -> 0 ~ 7
for (int n_2x1 = 0; n_2x1 <= n; ++n_2x1) { // number of 2x1 block -> 0 ~ n
for (int n_1x1 = 0; n_1x1 <= (14 - n * 2); ++n_1x1) { // number of 1x1 block -> 0 ~ (14 - 2n)
int n_1x2 = n - n_2x1;
int n_space = 16 - n * 2 - n_1x1;
// 0x0 -> 00 / 1x2 -> 01 / 2x1 -> 10 / 1x1 -> 11
build_basic_ranges(n_space, n_1x2, n_2x1, n_1x1, basic_ranges);
}
}
}
std::sort(basic_ranges.begin(), basic_ranges.end()); // sort basic ranges
return true; // case valid
}
void build_basic_ranges(int n1, int n2, int n3, int n4, std::vector<uint32_t> &ranges) {
// printf("generate n1 = %d | n2 = %d | n3 = %d | n4 = %d\n", n1, n2, n3, n4);
void build_basic_ranges(int n1, int n2, int n3, int n4, std::vector<uint32_t> &ranges) { // build target ranges
int len, limit;
constexpr uint32_t M_01 = 0b01 << 30;
constexpr uint32_t M_10 = 0b10 << 30;
constexpr uint32_t M_11 = 0b11 << 30;
std::vector<uint32_t> cache_1;
std::vector<uint32_t> cache_2;
int len, limit;
std::vector<uint32_t> cache_1, cache_2;
len = n1 + n2;
limit = 0b1 << len;
for (uint32_t bin = 0; bin < limit; ++bin) {
if (binary_count(bin) != n2) { // skip binary without `n2` non-zero bits
continue;
}
uint32_t range = 0;
uint32_t mask = bin;
for (int i = 0; i < len; ++i) { // generate range base on binary value
range >>= 2;
if (mask & 0b1) { // non-zero bit
range |= M_01;
if ((bin >> i) & 0b1) { // non-zero bit
(range >>= 2) |= M_01;
}
mask >>= 1;
}
cache_1.emplace_back(range); // insert into cache level 1
cache_1.emplace_back(range); // insert into first layer
}
len += n3;
limit <<= n3;
for (uint32_t bin = 0; bin < limit; ++bin) {
if (binary_count(bin) != n3) { // skip binary without `n3` non-zero bits
continue;
}
for (uint32_t base : cache_1) { // traverse cache level 1
for (uint32_t base : cache_1) { // traverse first layer
uint32_t range = 0;
uint32_t mask = bin;
for (int i = 0; i < len; ++i) { // generate range base on binary value
range >>= 2;
if (mask & 0b1) { // non-zero bit
range |= M_10;
} else { // zero bit
range |= base & M_11;
base <<= 2;
if ((bin >> i) & 0b1) { // non-zero bit
(range >>= 2) |= M_10;
continue;
}
mask >>= 1;
(range >>= 2) |= base & M_11;
base <<= 2;
}
cache_2.emplace_back(range); // insert into cache level 2
cache_2.emplace_back(range); // insert into second layer
}
}
len += n4;
limit <<= n4;
for (uint32_t bin = 0; bin < limit; ++bin) {
if (binary_count(bin) != n4) { // skip binary without `n4` non-zero bits
continue;
}
for (uint32_t base : cache_2) { // traverse cache level 2
for (uint32_t base : cache_2) { // traverse second layer
uint32_t range = 0;
uint32_t mask = bin;
for (int i = 0; i < len; ++i) { // generate range base on binary value
range >>= 2;
if (mask & 0b1) { // non-zero bit
range |= M_11;
} else { // zero bit
range |= base & M_11;
base <<= 2;
if ((bin >> i) & 0b1) { // non-zero bit
(range >>= 2) |= M_11;
continue;
}
mask >>= 1;
(range >>= 2) |= base & M_11;
base <<= 2;
}
ranges.emplace_back(range); // insert into release ranges
}
}
}
//bool check_case(uint32_t head, uint32_t range) { // whether case is valid
//
// constexpr uint32_t M_00 = 0B00 << 30;
// constexpr uint32_t M_01 = 0b01 << 30;
// constexpr uint32_t M_10 = 0b10 << 30;
// constexpr uint32_t M_11 = 0b11 << 30;
//
// uint32_t status = 0b110011 << head;
//
// for (int addr = 0; range; range <<= 2) {
// while (status >> addr & 0x1) {
// ++addr;
// }
//
// switch (range & M_11) {
// case M_00: // space
// case M_11: // 1x1
// if (addr > 19) {
// return false;
// }
// status |= 0b1 << addr;
// break;
// case M_01: // 1x2
// if (addr > 18 || (addr & 0b11) == 0b11 || status >> (addr + 1) & 0b1) {
// return false;
// }
// status |= 0b11 << addr;
// break;
// case M_10: // 2x1
// if (addr > 15 || status >> (addr + 4) & 0b1) {
// return false;
// }
// status |= 0b10001 << addr;
// break;
// }
// }
//
// return true;
// uint32_t status = 0x110011 << head;
// for (int addr = 0; range; range >>= 2) {
// while (status >> addr & 0x1) {
// ++addr;
// }
// switch (range & 0x3) {
// case 0b00: // space
// case 0b11: // 1x1
// if (addr > 19) {
// return false;
// }
// status |= 0b1 << addr;
// break;
// case 0b01: // 1x2
// if (addr > 18 || addr % 4 == 3 || status >> (addr + 1) & 0x1) {
// return false;
// }
// status |= 0b11 << addr;
// break;
// case 0b10: // 2x1
// if (addr > 15 || status >> (addr + 4) & 0x1) {
// return false;
// }
// status |= 0b10001 << addr;
// break;
// }
// }
// return true;
void load_basic_ranges(std::vector<uint32_t> &basic_ranges) { // load basic ranges
basic_ranges.clear();
for (int n = 0; n <= 7; ++n) { // number of 1x2 and 2x1 block -> 0 ~ 7
for (int n_2x1 = 0; n_2x1 <= n; ++n_2x1) { // number of 2x1 block -> 0 ~ n
for (int n_1x1 = 0; n_1x1 <= (14 - n * 2); ++n_1x1) { // number of 1x1 block -> 0 ~ (14 - 2n)
int n_1x2 = n - n_2x1;
int n_space = 16 - n * 2 - n_1x1;
// 0x0 -> 00 / 1x2 -> 01 / 2x1 -> 10 / 1x1 -> 11
build_basic_ranges(n_space, n_1x2, n_2x1, n_1x1, basic_ranges); // build target ranges
}
}
}
std::sort(basic_ranges.begin(), basic_ranges.end()); // sort basic ranges
for (uint32_t &range : basic_ranges) {
range = binary_reverse(range); // range reverse
}
}
//}
void find_all_cases(std::vector<uint64_t> &all_cases) { // find all valid cases
std::vector<uint32_t> basic_ranges;
load_basic_ranges(basic_ranges); // load basic ranges
all_cases.clear();
for (uint32_t head = 0; head < 16; ++head) { // address for 2x2 block
if ((head & 0b11) == 0b11) { // aka (head % 4 == 3)
continue;
}
uint64_t prefix = int64_t(head) << 32;
for (uint32_t range : basic_ranges) { // combine 2x2 address and range
if (check_case(head, range)) {
all_cases.emplace_back(prefix | binary_reverse(range)); // found valid case
}
}
}
}
int main() {
// std::vector<uint32_t> temp;
// load_basic_ranges(temp);
// n1 = 2 | n2 = 1 | n3 = 3 | n4 = 6
// build_basic_ranges(2, 1, 3, 6, temp);
std::vector<uint64_t> temp;
find_all_cases(temp);
printf("size -> %ld\n", temp.size());
std::vector<uint64_t> all_cases;
find_all_cases(all_cases);
printf("size -> %ld\n", all_cases.size());
return 0;
}

Loading…
Cancel
Save