#include #include "common.h" #include "basic_ranges.h" std::mutex BasicRanges::basic_ranges_building; std::vector BasicRanges::basic_ranges; bool BasicRanges::basic_ranges_available = false; inline uint32_t binary_count(uint32_t bin) { // get number of non-zero bits bin -= (bin >> 1) & 0x55555555; bin = (bin & 0x33333333) + ((bin >> 2) & 0x33333333); bin = ((bin >> 4) + bin) & 0x0F0F0F0F; bin += bin >> 8; bin += bin >> 16; return bin & 0b111111; } BasicRanges::Status BasicRanges::basic_ranges_status() { // get basic ranges status if (basic_ranges_available) { return AVAILABLE; // basic ranges already built } if (!basic_ranges_building.try_lock()) { // fail to lock mutex -> another thread working return BUILDING; } basic_ranges_building.unlock(); // release mutex return NO_INIT; } const std::vector* BasicRanges::get_basic_ranges() { // get const ptr of basic ranges if (basic_ranges.empty()) { build_basic_ranges(); // basic ranges initialize } return &basic_ranges; // return ptr } void BasicRanges::build_basic_ranges() { // build basic ranges if (basic_ranges_available) { return; // basic ranges already built } if (basic_ranges_building.try_lock()) { // lock success -> start building /// 0x0 -> 00 | 1x2 -> 01 | 2x1 -> 10 | 1x1 -> 11 for (int n = 0; n <= 7; ++n) { // number of 1x2 and 2x1 block -> 0 ~ 7 for (int n_2x1 = 0; n_2x1 <= n; ++n_2x1) { // number of 2x1 block -> 0 ~ n for (int n_1x1 = 0; n_1x1 <= (14 - n * 2); ++n_1x1) { // number of 1x1 block -> 0 ~ (14 - 2n) int n_1x2 = n - n_2x1; int n_space = 16 - n * 2 - n_1x1; generate_ranges(n_space, n_1x2, n_2x1, n_1x1); // generate target ranges } } } std::sort(basic_ranges.begin(), basic_ranges.end()); // sort basic ranges for (uint32_t &range : basic_ranges) { range = Common::range_reverse(range); // basic ranges reverse } basic_ranges_available = true; // set available flag } else { // another thread building basic_ranges_building.lock(); // blocking waiting } basic_ranges_building.unlock(); } void BasicRanges::generate_ranges(int n1, int n2, int n3, int n4) { // generate specific basic ranges int len, limit; constexpr uint32_t MASK_01 = 0b01 << 30; constexpr uint32_t MASK_10 = 0b10 << 30; constexpr uint32_t MASK_11 = 0b11 << 30; std::vector cache_1, cache_2; len = n1 + n2; limit = 0b1 << len; for (uint32_t bin = 0; bin < limit; ++bin) { if (binary_count(bin) != n2) { // skip binary without `n2` non-zero bits continue; } uint32_t range = 0; for (int i = 0; i < len; ++i) { // generate range base on binary value range >>= 2; if ((bin >> i) & 0b1) { // non-zero bit range |= MASK_01; } } cache_1.emplace_back(range); // insert into first layer } len += n3; limit <<= n3; for (uint32_t bin = 0; bin < limit; ++bin) { if (binary_count(bin) != n3) { // skip binary without `n3` non-zero bits continue; } for (uint32_t base : cache_1) { // traverse first layer uint32_t range = 0; for (int i = 0; i < len; ++i) { // generate range base on binary value if ((bin >> i) & 0b1) { // non-zero bit (range >>= 2) |= MASK_10; continue; } (range >>= 2) |= base & MASK_11; base <<= 2; } cache_2.emplace_back(range); // insert into second layer } } len += n4; limit <<= n4; for (uint32_t bin = 0; bin < limit; ++bin) { if (binary_count(bin) != n4) { // skip binary without `n4` non-zero bits continue; } for (uint32_t base : cache_2) { // traverse second layer uint32_t range = 0; for (int i = 0; i < len; ++i) { // generate range base on binary value if ((bin >> i) & 0b1) { // non-zero bit (range >>= 2) |= MASK_11; continue; } (range >>= 2) |= base & MASK_11; base <<= 2; } basic_ranges.emplace_back(range); // insert into release } } }