#include "core.h" #include "common.h" #define ALLOW_UP (filter != -UP) #define ALLOW_DOWN (filter != -DOWN) #define ALLOW_LEFT (filter != -LEFT) #define ALLOW_RIGHT (filter != -RIGHT) #define NOT_COLUMN_0 ((addr & 3) != 0) #define NOT_COLUMN_2 ((addr & 3) != 2) #define NOT_COLUMN_3 ((addr & 3) != 1) #define MOVE_UP (next_addr = addr + UP) #define MOVE_DOWN (next_addr = addr + DOWN) #define MOVE_LEFT (next_addr = addr + LEFT) #define MOVE_RIGHT (next_addr = addr + RIGHT) #define TOP_LIMIT(ADDR) (addr >= ADDR * 3) #define BOTTOM_LIMIT(ADDR) (addr <= ADDR * 3) #define CHECK_UP(MASK) !(code >> MOVE_UP & MASK) #define CHECK_DOWN(MASK) !(code >> MOVE_DOWN & MASK) #define CHECK_LEFT(MASK) !(code >> MOVE_LEFT & MASK) #define CHECK_RIGHT(MASK) !(code >> MOVE_RIGHT & MASK) #define RELEASE_1x1(FILTER) RELEASE(NEXT_CODE_1x1, FILTER) #define RELEASE_1x2(FILTER) RELEASE(NEXT_CODE_1x2, FILTER) #define RELEASE_2x1(FILTER) RELEASE(NEXT_CODE_2x1, FILTER) #define RELEASE_2x2(FILTER) RELEASE(NEXT_CODE_2x2, FILTER) #define NEXT_CODE_1x1 (code & ~(F_1x1 << addr) | (C_1x1 << next_addr)) #define NEXT_CODE_1x2 (code & ~(F_1x2 << addr) | (C_1x2 << next_addr)) #define NEXT_CODE_2x1 (code & ~(F_2x1 << addr) | (C_2x1 << next_addr)) #define NEXT_CODE_2x2 (code & ~(F_2x2 << addr) | (C_2x2 << next_addr)) //////////////////////////////////////// #define BFS_INIT \ int next_addr; \ int current = 0; \ cache[0].addr = addr; #define BFS_LOAD \ code = cache[current].code; \ addr = cache[current].addr; \ int filter = cache[current++].filter; #define BFS_STOP (current == cache_size) //////////////////////////////////////// #define RELEASE(NEXT_CODE, FILTER) \ cache_t next_case = { \ .code = NEXT_CODE, \ .mask = F_1x1 << next_addr, \ .filter = FILTER, \ .addr = next_addr \ }; \ cache_insert(next_case); //////////////////////////////////////// inline void Core::cache_insert(Core::cache_t &next_case) { // try to insert into cache auto *cache_ptr = cache; for (; cache_ptr < cache + cache_size; ++cache_ptr) { if (cache_ptr->code == next_case.code) { return; // already exist -> insert failed } } *cache_ptr = next_case; // cache push back ++cache_size; } void Core::move_1x1(uint64_t code, int addr) { // try to move target 1x1 block BFS_INIT while (!BFS_STOP) { // bfs search process BFS_LOAD if (ALLOW_UP && TOP_LIMIT(4) && CHECK_UP(F_1x1)) { RELEASE_1x1(UP) // 1x1 block move up } if (ALLOW_DOWN && BOTTOM_LIMIT(15) && CHECK_DOWN(F_1x1)) { RELEASE_1x1(DOWN) // 1x1 block move down } if (ALLOW_LEFT && NOT_COLUMN_0 && CHECK_LEFT(F_1x1)) { RELEASE_1x1(LEFT) // 1x1 block move left } if (ALLOW_RIGHT && NOT_COLUMN_3 && CHECK_RIGHT(F_1x1)) { RELEASE_1x1(RIGHT) // 1x1 block move right } } } void Core::move_1x2(uint64_t code, int addr) { // try to move target 1x2 block BFS_INIT while (!BFS_STOP) { // bfs search process BFS_LOAD if (ALLOW_UP && TOP_LIMIT(4) && CHECK_UP(F_1x2)) { RELEASE_1x2(UP) // 1x2 block move up } if (ALLOW_DOWN && BOTTOM_LIMIT(14) && CHECK_DOWN(F_1x2)) { RELEASE_1x2(DOWN) // 1x2 block move down } if (ALLOW_LEFT && NOT_COLUMN_0 && CHECK_LEFT(F_1x1)) { RELEASE_1x2(LEFT) // 1x2 block move left } if (ALLOW_RIGHT && NOT_COLUMN_2 && CHECK_RIGHT(F_1x1_R)) { RELEASE_1x2(RIGHT) // 1x2 block move right } } } void Core::move_2x1(uint64_t code, int addr) { // try to move target 2x1 block BFS_INIT while (!BFS_STOP) { // bfs search process BFS_LOAD if (ALLOW_UP && TOP_LIMIT(4) && CHECK_UP(F_1x1)) { RELEASE_2x1(UP) // 2x1 block move up } if (ALLOW_DOWN && BOTTOM_LIMIT(11) && CHECK_DOWN(F_1x1_D)) { RELEASE_2x1(DOWN) // 2x1 block move down } if (ALLOW_LEFT && NOT_COLUMN_0 && CHECK_LEFT(F_2x1)) { RELEASE_2x1(LEFT) // 2x1 block move left } if (ALLOW_RIGHT && NOT_COLUMN_3 && CHECK_RIGHT(F_2x1)) { RELEASE_2x1(RIGHT) // 2x1 block move right } } } void Core::move_2x2(uint64_t code, int addr) { // try to move target 2x2 block BFS_INIT while (!BFS_STOP) { // bfs search process BFS_LOAD if (ALLOW_UP && TOP_LIMIT(4) && CHECK_UP(F_1x2)) { RELEASE_2x2(UP) // 2x2 block move up } if (ALLOW_DOWN && BOTTOM_LIMIT(10) && CHECK_DOWN(F_1x2_D)) { RELEASE_2x2(DOWN) // 2x2 block move down } if (ALLOW_LEFT && NOT_COLUMN_0 && CHECK_LEFT(F_2x1)) { RELEASE_2x2(LEFT) // 2x2 block move left } if (ALLOW_RIGHT && NOT_COLUMN_2 && CHECK_RIGHT(F_2x1_R)) { RELEASE_2x2(RIGHT) // 2x2 block move right } } } void Core::next_step(uint64_t code, uint64_t mask) { // search next step cases cache[0].filter = 0; // without filter cache[0].code = code; // bfs root code auto range = code | mask; for (int addr = 0; range; addr += 3, range >>= 3) { // traverse every 3-bits switch (range & 0b111) { // match low 3-bits case B_1x1: move_1x1(code, addr); // try to move 1x1 block break; case B_1x2: move_1x2(code, addr); // try to move 1x2 block break; case B_2x1: move_2x1(code, addr); // try to move 2x1 block break; case B_2x2: move_2x2(code, addr); // try to move 2x2 block break; default: continue; // B_space or B_fill } if (cache_size != 1) { // found one or more next cases // TODO: try to send multi-items data for (int i = 1; i < cache_size; ++i) { release(cache[i].code, cache[i].mask); // release next cases } cache_size = 1; // reset cache size } } }