华容道高性能计算引擎
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

176 lines
5.5 KiB

#!/usr/bin/env python3
import igraph as ig
def split_neighbor_layer(g: ig.Graph, n: int) -> tuple[list[set[ig.Vertex]], list[set[ig.Vertex]]]:
layer_a: set[ig.Vertex] = set(g.vs.select(step=n))
layer_b: set[ig.Vertex] = set(g.vs.select(step=n+1))
layer_a_data: list[set[ig.Vertex]] = []
layer_b_data: list[set[ig.Vertex]] = []
select_next = lambda p: set(x for x in p.neighbors() if x['step'] == n + 1)
select_last = lambda p: set(x for x in p.neighbors() if x['step'] == n)
while len(layer_a) != 0:
side_a: set[ig.Vertex] = set()
side_b: set[ig.Vertex] = set()
point = layer_a.pop()
side_a.add(point)
while True:
nexts = set()
for x in side_a:
nexts.update(select_next(x))
if nexts == side_b:
break
side_b.update(nexts)
for x in nexts:
if x in layer_b:
layer_b.remove(x)
lasts = set()
for x in side_b:
lasts.update(select_last(x))
if lasts == side_a:
break
side_a.update(lasts)
for x in lasts:
if x in layer_a:
layer_a.remove(x)
layer_a_data.append(side_a)
layer_b_data.append(side_b)
assert len(layer_b) == 0
return layer_a_data, layer_b_data
def combine_split_result(data_a: list[set[ig.Vertex]], data_b: list[set[ig.Vertex]]) -> list[set[ig.Vertex]]:
result = []
while True:
data_a = list(filter(None, data_a))
data_b = list(filter(None, data_b))
data_a = sorted(data_a, key=lambda x: len(x))
data_b = sorted(data_b, key=lambda x: len(x))
if len(data_a) == 0:
assert len(data_b) == 0
break
# print(len(data_a))
# for x in data_a:
# print([y.attributes() for y in x])
# print(len(data_b))
# for x in data_b:
# print([y.attributes() for y in x])
# print('-' * 64)
if len(data_a[0]) <= len(data_b[0]):
union = data_a[0]
peer_unions = data_b
else:
union = data_b[0]
peer_unions = data_a
for peer_union in peer_unions:
mid = union & peer_union
if len(mid) == 0:
continue
result.append(mid)
for x in mid:
union.remove(x)
peer_union.remove(x)
return result
def split_layers(g: ig.Graph) -> list[list[set[ig.Vertex]]]:
assert min(g.vs['step']) == 0
layer_num = max(g.vs['step']) + 1
print(layer_num)
layers = [{'up': [], 'down': []} for x in range(layer_num)]
layers[0]['up'] = [set(g.vs.select(step=0))]
layers[-1]['down'] = [set(g.vs.select(step=layer_num-1))]
for layer_num in range(layer_num - 1):
data_a, data_b = split_neighbor_layer(g, layer_num)
layers[layer_num]['down'] = data_a
layers[layer_num + 1]['up'] = list(filter(None, data_b))
for layer in layers:
assert set() not in layer['up']
assert set() not in layer['down']
up = set()
[up.update(x) for x in layer['up']]
down = set()
[down.update(x) for x in layer['down']]
assert up == down
result = []
for layer in layers:
result.append(combine_split_result(layer['up'], layer['down']))
for layer_num, layer in enumerate(result):
assert set() not in layer
layer_nodes = set()
[layer_nodes.update(x) for x in layer]
assert layer_nodes == set(g.vs.select(step=layer_num))
return result
def export_new_graph(g: ig.Graph, split_data: list[list[set[ig.Vertex]]]) -> ig.Graph:
ng = ig.Graph(sum([len(x) for x in split_data]))
g_index = 0
index_map = {}
for layer_index, unions in enumerate(split_data):
for union_index, nodes in enumerate(unions):
index_map[(layer_index, union_index)] = g_index
ng.vs[g_index]['step'] = layer_index
ng.vs[g_index]['codes'] = [x['code'] for x in nodes]
g_index += 1
for layer_index in range(len(split_data)-1):
curr_layer = split_data[layer_index]
next_layer = split_data[layer_index+1]
def union_neighbors(curr_union_index: int) -> list[int]:
next_union_indexes = set()
for node in curr_layer[curr_union_index]:
next_nodes = [x for x in node.neighbors() if x['step'] == layer_index+1]
for next_node in next_nodes:
for next_union_index in range(len(next_layer)):
if next_node in next_layer[next_union_index]:
next_union_indexes.add(next_union_index)
return sorted(next_union_indexes)
for union_index in range(len(curr_layer)):
union_a = index_map[(layer_index, union_index)]
edges = [(union_a, index_map[(layer_index+1, x)]) for x in union_neighbors(union_index)]
ng.add_edges(edges)
return ng
if __name__ == '__main__':
raw = ig.Graph.Read_Pickle('data/DAA7F30.pkl')
# raw = ig.Graph.Read_Pickle('data/DBAB4CC.pkl')
# raw = ig.Graph.Read_Pickle('main_combined.pkl')
print(raw.summary())
gg = export_new_graph(raw, split_layers(raw))
print(gg.summary())
# print(gg.isomorphic(raw))
# for x in gg.vs:
# x['color'] = 'yellow'
# gg.vs[0]['color'] = 'red'
# print(gg)
# ig.plot(gg, 'demo.png', vertex_size=10)
gg.write_pickle('main_combined.pkl')
# gg.write_graphml('main_combined.graphml')