Browse Source

base code

master
Dnomd343 5 years ago
commit
2abde4158f
  1. 540
      main.cpp

540
main.cpp

@ -0,0 +1,540 @@
#include <iostream>
#include <vector>
#include <string>
#include <fstream>
using namespace std;
ifstream File_Input;
ofstream File_Output;
struct Case_struct {
bool freeze[4][5]; // true -> no move ; false -> can move
unsigned char status[4][5]; // 0xFF -> undefined ; 0xFE -> space
unsigned char type[15]; // 0 -> 2 * 2 ; 1 -> 2 * 1 ; 2 -> 1 * 2 ; 3 -> 1 * 1
unsigned long long code;
};
vector <vector <Case_struct *> > Layer;
vector <vector <vector <int> > > Hash;
vector <vector <vector <int> > > Layer_Next;
vector <vector <vector <int> > > Layer_Source;
vector <int> int_vector;
int layer_num, layer_index;
void debug(Case_struct &dat);
unsigned long long Change_int (char str[10]);
string Change_str(unsigned long long dat);
bool Parse_Code(Case_struct &dat, unsigned long long Code);
void Get_Code(Case_struct &dat);
void Find_Sub_Case(Case_struct &dat, int &num, int x, int y, bool addr[4][5]);
void Build_Case(Case_struct &dat, int &num, int x, int y, bool addr[4][5]);
void Find_Next_Case(Case_struct &dat_raw);
void Add_Case(Case_struct *dat);
void Calculate(unsigned long long code);
void Free_Data();
int main() {
cout << "Klotski Calculator by Dnomd343" << endl;
cin.get();
cout << "start" << endl;
//Calculate(0x4FEA13400); // 0x1A9BF0C00 0x2CF519C00 0x652D7F000 0x2B1877C00
//Calculate(0x652D7F000);
// 测速
for (int i = 0; i < 10; i++) {
Calculate(0x4FEA13400);
}
// cout << endl << "Output:" << endl;
// for (int i = 0; i < Layer.size(); i++) {
// cout << "Layer[" << i << "] -> " << Layer[i].size() << endl;
// }
// int num = 1;
// cout << "layer[" << num << "].size = " << Layer_Source[num].size() << endl;
// for (int i = 0; i < Layer_Source[num].size(); i++) {
// cout << " (" << num << "," << i << ") -> ";
// for (int j = 0; j < Layer_Source[num][i].size(); j++) {
// cout << "(" << num - 1 << "," << Layer_Source[num][i][j] << ") ";
// }
// cout << endl;
// }
// int num = 221;
// cout << "layer[" << num << "].size = " << Layer_Source[num].size() << endl;
// for (int i = 0; i < Layer_Next[num].size(); i++) {
// cout << " (" << num << "," << i << ") -> ";
// for (int j = 0; j < Layer_Next[num][i].size(); j++) {
// cout << "(" << num + 1 << "," << Layer_Next[num][i][j] << ") ";
// }
// cout << endl;
// }
cout << "bye..." << endl;
return 0;
}
void Free_Data() { //释放数据
for (int i = 0; i < Layer.size(); i++) { // 释放Layer中指向的全部节点
for (int j = 0; j < Layer[i].size(); j++) {
delete Layer[i][j];
}
}
Layer.clear(); // 清空层数据
Hash.clear(); // 清空哈希表
Layer_Next.clear(); // 清空子节点标识
Layer_Source.clear(); // 清空父节点标识
}
void Calculate(unsigned long long code) { // 计算输入编码的全部层数据
Free_Data(); // 释放上一次计算的数据
Case_struct *dat = new Case_struct;
vector <Case_struct *> empty_layer;
vector <vector <int> > int_2nd_vector;
vector <vector <int> > hash_layer;
hash_layer.resize(0x100); // 单层哈希索引设定为8位
Parse_Code(*dat, code); // 解译输入编码
Layer.push_back(empty_layer); // 添加首层
Hash.push_back(hash_layer);
Layer_Next.push_back(int_2nd_vector);
Layer_Source.push_back(int_2nd_vector);
Layer[0].push_back(dat); // 添加根节点
Hash[0][0xff & (code >> 24)].push_back(0);
Layer_Next[0].push_back(int_vector);
Layer_Source[0].push_back(int_vector);
layer_num = layer_index = 0; // 定义入口为根节点
while (1 == 1) { // 创建死循环
if (layer_index == 0) { // 若在计算层的第一个元素
Layer.push_back(empty_layer); // 则新增一层
Hash.push_back(hash_layer);
Layer_Next.push_back(int_2nd_vector);
Layer_Source.push_back(int_2nd_vector);
}
Find_Next_Case(*Layer[layer_num][layer_index]); // 寻找子布局
if (layer_index == Layer[layer_num].size() - 1) { // 若在层的最后一个元素
if (Layer[layer_num + 1].size() == 0) { // 若下一层是空的
break; // 已全部搜索完毕 退出搜索循环
}
layer_num++; // 计算目标移到下一层第一个元素
layer_index = 0;
} else { // 不是最后一个元素
layer_index++; // 计算目标移到下一元素
}
}
Layer.pop_back(); // 移除最后的空层
Hash.pop_back();
Layer_Next.pop_back();
Layer_Source.pop_back();
}
void Add_Case(Case_struct *dat) { // 新节点若不重复即可以加入
int x, y, k, num;
int hash_index = (0xff & ((*dat).code >> 24)); // 取编码低24 ~ 32位作为哈希索引
num = layer_num; // 扫描目标为当前计算所在层
for (k = 0; k < Hash[num][hash_index].size(); k++) { // 遍历对应索引
if ((*Layer[num][Hash[num][hash_index][k]]).code == (*dat).code) { // 若发现重复
delete dat; // 释放不加入的节点
return; // 退出
}
}
num++; // 向下一层
for (k = 0; k < Hash[num][hash_index].size(); k++) { // 遍历对应索引
if ((*Layer[num][Hash[num][hash_index][k]]).code == (*dat).code) { // 若发现重复
for (x = 0; x < 4; x++) { // 遍历freeze表
for (y = 0; y < 5; y++) {
if ((*dat).freeze[x][y] == true) { // 将输入表合并到原先的表上
(*Layer[num][Hash[num][hash_index][k]]).freeze[x][y] = true;
}
}
}
Layer_Next[layer_num][layer_index].push_back(Hash[num][hash_index][k]); // 添加子节点数据
Layer_Source[num][Hash[num][hash_index][k]].push_back(layer_index); // 添加父节点数据
delete dat; // 释放不加入的节点
return; // 退出
}
}
Hash[layer_num + 1][0xff & ((*dat).code >> 24)].push_back(Layer[layer_num + 1].size()); // 添加索引
Layer[layer_num + 1].push_back(dat); // 新增布局到Layer对应层中
Layer_Next[layer_num + 1].push_back(int_vector); // 新建子节点
Layer_Source[layer_num + 1].push_back(int_vector); // 新建父节点
Layer_Next[layer_num][layer_index].push_back(Layer[layer_num + 1].size() - 1); // 添加子节点数据
Layer_Source[layer_num + 1][Layer_Source[layer_num + 1].size() - 1].push_back(layer_index); // 添加父节点数据
}
void Find_Next_Case(Case_struct &dat_raw) { // 找到下一步移动的情况(一步可以为同一块多次移动) 结果聚集到Add_Case中
int num, x, y, i, j;
bool addr[4][5]; // 在Find_Sub_Case深搜中用于剪枝
Case_struct dat = dat_raw;
for (y = 0; y < 5; y++) { // 仅保留空格位置的freeze为true
for (x = 0; x < 4; x++) {
if (dat.status[x][y] != 0xFE && dat.freeze[x][y] == true) { // 不为空格但freeze为true
dat.freeze[x][y] = false; // 重置为false
}
}
}
for (y = 0; y < 5; y++) { // 遍历整个棋盘
for (x = 0; x < 4; x++) {
if (dat_raw.freeze[x][y] == true) {continue;} // 遇到freeze为true的跳过
num = dat.status[x][y]; // 统一修改(x, y)块 减少代码量
dat.status[x][y] = 0xFE;
dat.freeze[x][y] = true;
for (i = 0; i < 4; i++) { // 初始化
for (j = 0; j < 5; j++) {
addr[i][j] = false;
}
}
addr[x][y] = true; // 加入当前块 防止重复查询
switch (dat.type[num]) {
case 0: // 2 * 2
dat_raw.freeze[x + 1][y]
= dat_raw.freeze[x][y + 1] = dat_raw.freeze[x + 1][y + 1] = true;
dat.status[x + 1][y] = dat.status[x][y + 1] = dat.status[x + 1][y + 1] = 0xFE;
dat.freeze[x + 1][y] = dat.freeze[x][y + 1] = dat.freeze[x + 1][y + 1] = true;
Find_Sub_Case(dat, num, x, y, addr); // 进行子步递归搜索
dat.status[x + 1][y] = dat.status[x][y + 1] = dat.status[x + 1][y + 1] = num;
dat.freeze[x + 1][y] = dat.freeze[x][y + 1] = dat.freeze[x + 1][y + 1] = false;
break;
case 1: // 2 * 1
dat_raw.freeze[x + 1][y] = true;
dat.status[x + 1][y] = 0xFE;
dat.freeze[x + 1][y] = true;
Find_Sub_Case(dat, num, x, y, addr); // 进行子步递归搜索
dat.status[x + 1][y] = num;
dat.freeze[x + 1][y] = false;
break;
case 2: // 1 * 2
dat_raw.freeze[x][y + 1] = true;
dat.status[x][y + 1] = 0xFE;
dat.freeze[x][y + 1] = true;
Find_Sub_Case(dat, num, x, y, addr); // 进行子步递归搜索
dat.status[x][y + 1] = num;
dat.freeze[x][y + 1] = false;
break;
case 3: // 1 * 1
Find_Sub_Case(dat, num, x, y, addr); // 进行子步递归搜索
break;
}
dat.status[x][y] = num; // 复原统一修改的块
dat.freeze[x][y] = false;
}
}
}
void Find_Sub_Case(Case_struct &dat, int &num, int x, int y, bool addr[4][5]) { // 找到下一个单格移动的情况
switch (dat.type[num]) {
case 0: // 2 * 2
if (y != 0) { // 不在最上面
if (dat.status[x][y - 1] == 0xFE && dat.status[x + 1][y - 1] == 0xFE) { // 上面为空
Build_Case(dat, num, x, y - 1, addr);
}
}
if (y != 3) { // 不在最下面
if (dat.status[x][y + 2] == 0xFE && dat.status[x + 1][y + 2] == 0xFE) { // 下面为空
Build_Case(dat, num, x, y + 1, addr);
}
}
if (x != 0) { // 不在最左边
if (dat.status[x - 1][y] == 0xFE && dat.status[x - 1][y + 1] == 0xFE) { // 左边为空
Build_Case(dat, num, x - 1, y, addr);
}
}
if (x != 2) { // 不在最右边
if (dat.status[x + 2][y] == 0xFE && dat.status[x + 2][y + 1] == 0xFE) { // 右边为空
Build_Case(dat, num, x + 1, y, addr);
}
}
break;
case 1: // 2 * 1
if (y != 0) { // 不在最上面
if (dat.status[x][y - 1] == 0xFE && dat.status[x + 1][y - 1] == 0xFE) { // 上面为空
Build_Case(dat, num, x, y - 1, addr);
}
}
if (y != 4) { // 不在最下面
if (dat.status[x][y + 1] == 0xFE && dat.status[x + 1][y + 1] == 0xFE) { // 下面为空
Build_Case(dat, num, x, y + 1, addr);
}
}
if (x != 0) { // 不在最左边
if (dat.status[x - 1][y] == 0xFE) { // 左边为空
Build_Case(dat, num, x - 1, y, addr);
}
}
if (x != 2) { // 不在最右边
if (dat.status[x + 2][y] == 0xFE) { // 右边为空
Build_Case(dat, num, x + 1, y, addr);
}
}
break;
case 2: // 1 * 2
if (y != 0) { // 不在最上面
if (dat.status[x][y - 1] == 0xFE) { // 上面为空
Build_Case(dat, num, x, y - 1, addr);
}
}
if (y != 3) { // 不在最下面
if (dat.status[x][y + 2] == 0xFE) { // 下面为空
Build_Case(dat, num, x, y + 1, addr);
}
}
if (x != 0) { // 不在最左边
if (dat.status[x - 1][y] == 0xFE && dat.status[x - 1][y + 1] == 0xFE) { // 左边为空
Build_Case(dat, num, x - 1, y, addr);
}
}
if (x != 3) { // 不在最右边
if (dat.status[x + 1][y] == 0xFE && dat.status[x + 1][y + 1] == 0xFE) { // 右边为空
Build_Case(dat, num, x + 1, y, addr);
}
}
break;
case 3: // 1 * 1
if (y != 0) { // 不在最上面
if (dat.status[x][y - 1] == 0xFE) { // 上面为空
Build_Case(dat, num, x, y - 1, addr);
}
}
if (y != 4) { // 不在最下面
if (dat.status[x][y + 1] == 0xFE) { // 下面为空
Build_Case(dat, num, x, y + 1, addr);
}
}
if (x != 0) { // 不在最左边
if (dat.status[x - 1][y] == 0xFE) { // 左边为空
Build_Case(dat, num, x - 1, y, addr);
}
}
if (x != 3) { // 不在最右边
if (dat.status[x + 1][y] == 0xFE) { // 右边为空
Build_Case(dat, num, x + 1, y, addr);
}
}
break;
}
}
void Build_Case(Case_struct &dat, int &num, int x, int y, bool addr[4][5]) { // 实现移动并将结果发送到Add_Case
if (addr[x][y] == true) { // 重复
return; // 退出
} else {
addr[x][y] = true; // 加入位置数据
}
Case_struct *dat_mod = new Case_struct; // 新建对象 在Add_Case中加入层中或被释放
*dat_mod = dat;
switch ((*dat_mod).type[num]) { // 注入移动后的信息
case 0: // 2 * 2
(*dat_mod).status[x][y] = (*dat_mod).status[x][y + 1]
= (*dat_mod).status[x + 1][y] = (*dat_mod).status[x + 1][y + 1] = num;
break;
case 1: // 2 * 1
(*dat_mod).status[x][y] = (*dat_mod).status[x + 1][y] = num;
break;
case 2: // 1 * 2
(*dat_mod).status[x][y] = (*dat_mod).status[x][y + 1] = num;
break;
case 3: // 1 * 1
(*dat_mod).status[x][y] = num;
break;
}
Get_Code(*dat_mod); // 更新移动后的编码
Add_Case(dat_mod); // 发送给Add_Case
Find_Sub_Case(dat, num, x, y, addr); // 递归搜索
}
void Get_Code(Case_struct &dat) { // 获取编码并存储在dat.code 输入数据必须无误
bool temp[4][5]; // 用于临时标记
int x, y, num;
dat.code = 0;
for (x = 0; x < 4; x++) { // 初始化temp
for (y = 0; y < 5; y++) {
temp[x][y] = false;
}
}
num = 0;
for (y = 0; y < 5; y++) { // 遍历20个格
for (x = 0; x < 4; x++) {
if (temp[x][y] == true) {continue;} // 该格已被占用
if (dat.status[x][y] == 0xFE) { // space
num++;
dat.code <<= 2;
continue;
}
switch (dat.type[dat.status[x][y]]) { // type -> 0 / 1 / 2 / 3
case 0: // 2 * 2
dat.code |= (x + y * 4) << (num * 2); // 写入2 * 2块位置
temp[x][y + 1] = temp[x + 1][y] = temp[x + 1][y + 1] = true; // 标记占用
break;
case 1: // 2 * 1
num++;
dat.code <<= 2;
dat.code |= 1; // 01
temp[x + 1][y] = true; // 标记占用
break;
case 2: // 1 * 2
num++;
dat.code <<= 2;
dat.code |= 2; // 10
temp[x][y + 1] = true; // 标记占用
break;
case 3: // 1 * 1
num++;
dat.code <<= 2;
dat.code |= 3; // 11
break;
}
}
}
dat.code <<= (16 - num) * 2; // 左移使编码占满低36位
dat.code &= 0xFFFFFFFFF; // 清除高28位内容
}
bool Parse_Code(Case_struct &dat, unsigned long long Code) { // 解析编码 返回false表示编码有误
unsigned char range[16]; // dat低32位分16组
int i, x, y, num, space_num = 0;
dat.code = Code;
for (x = 0; x < 4; x++) { // 初始化status和freeze
for (y = 0; y < 5; y++) {
dat.status[x][y] = 0xFF;
dat.freeze[x][y] = false;
}
}
for (i = 0; i < 15; i++) { // 初始化type
dat.type[i] = 0xFF;
}
num = 0;
for (i = 15; i >= 0; i--) { // 载入排列到range
range[i] = Code & 0x3 ;
if (range[i] == 0) {num++;}
Code >>= 2;
}
if (num < 2) {return false;} // 0的个数低于两个出错
if (Code > 14) {return false;} // 排除越界情况
if (Code % 4 == 3) {return false;}
dat.type[0] = 0; // 载入2 * 2方块
x = Code % 4;
y = Code / 4;
dat.status[x][y] = dat.status[x + 1][y] = dat.status[x][y + 1] = dat.status[x + 1][y + 1] = 0;
num = x = y = 0;
for (i = 0; i < 16; i++) {
while (dat.status[x][y] != 0xFF) { // 找到下一个未填入的位置
if (++x == 4) {
x = 0;
if (++y == 5) { // 已填满20个空位 越界
if (space_num < 2) {return false;} // 空格低于两个 出错
for (num = i; num < 16; num++) { // 检查余下编码是否为0
if (range[num] != 0) {return false;} // 出现非0 编码错误
}
return true; // 全为0 编码正确
}
}
}
switch (range[i]) { // 分别处理四种情况
case 0: // space
space_num++;
dat.status[x][y] = 0xFE;
dat.freeze[x][y] = true; // 空格标记为不可移动
break;
case 1: // 2 * 1
if (x == 3) {return false;} // 越界出错
if (dat.status[x + 1][y] != 0xFF) {return false;} // 方块重叠
num++;
dat.type[num] = 1;
dat.status[x][y] = dat.status[x + 1][y] = num;
break;
case 2: // 1 * 2
if (y == 4) {return false;} // 越界出错
if (dat.status[x][y + 1] != 0xFF) {return false;} // 方块重叠
num++;
dat.type[num] = 2;
dat.status[x][y] = dat.status[x][y + 1] = num;
break;
case 3: // 1 * 1
num++;
dat.type[num] = 3;
dat.status[x][y] = num;
break;
}
}
return true; // 20格恰好被填满
}
string Change_str(unsigned long long dat) { // 将数字转化为文本编码
string str;
str.resize(9); // 修改其长度为9位
for (int i = 8; i >= 0; i--) { // 将每一位从数值转为ASCII码
if ((dat & 0xF) <= 9) { // 0 ~ 9
str[i] = (dat & 0xF) + 48;
} else { // A ~ F
str[i] = (dat & 0xF) + 55;
}
dat >>= 4;
}
return str;
}
unsigned long long Change_int (char *str) { // 将文本编码转化为数字(传入9位字符串)
unsigned long long dat = 0;
for (int i = 0; i < 9; i++) { // 将每一位从ASCII码转为数值
dat <<= 4;
if (str[i] >= 48 && str[i] <= 57) { // 0 ~ 9
dat |= str[i] - 48;
} else if (str[i] >= 65 && str[i] <= 70) { // A ~ F
dat |= str[i] - 55;
} else if (str[i] >= 97 && str[i] <= 102) { // a ~ f
dat |= str[i] - 87;
}
}
return dat;
}
void debug(Case_struct &dat) {
cout << "status" << endl;
for (int y = 0; y < 5; y++) {
for (int x = 0; x < 4; x++) {
if (dat.status[x][y] <= 9) { // 0 ~ 9
cout << int(dat.status[x][y]) << " ";
} else if (dat.status[x][y] <= 0xE) { // A ~ E
cout << char(dat.status[x][y] + 55) << " ";
} else if (dat.status[x][y] == 0xFE) { // space
cout << ". ";
} else if (dat.status[x][y] == 0xFF) { // undefined
cout << "* ";
} else { // error
cout << "! ";
}
}
cout << endl;
}
cout << "freeze" << endl;
for (int y = 0; y < 5; y++) {
for (int x = 0; x < 4; x++) {
if (dat.freeze[x][y] == true) {
cout << "x ";
} else {
cout << "- ";
}
}
cout << endl;
}
cout << "type" << endl;
for (int i = 0; i < 15; i++) {
if (i < 10) {
cout << i;
} else {
cout << char(i + 55);
}
cout << " -> ";
if (dat.type[i] == 0) {
cout << "2 * 2" << endl;
} else if (dat.type[i] == 1) {
cout << "2 * 1" << endl;
} else if (dat.type[i] == 2) {
cout << "1 * 2" << endl;
} else if (dat.type[i] == 3) {
cout << "1 * 1" << endl;
} else {
cout << "undefined" << endl;
}
}
cout << "code: " << Change_str(dat.code) << endl;
}
Loading…
Cancel
Save