Dnomd343
129c3b3c6d
|
5 years ago | |
---|---|---|
images | 5 years ago | |
HRD_cal.cpp | 5 years ago | |
HRD_cal.h | 5 years ago | |
README.md | 5 years ago | |
main.cpp | 5 years ago | |
style_count.md | 5 years ago |
README.md
基本定义
华容道布局
-
棋盘大小为4 x 5
-
棋子为2 x 2,2 x 1(1 x 2),1 x 1三种
-
棋子间不能重叠,且至少存在两个空格
-
有且仅有一个2 x 2块,其他类型不限定
(一个合法的华容道布局必须满足以上四点)
合法华容道布局共有29334498种
合法布局举例:
非法布局举例:
布局间的关系
-
移动原则:棋子只能平行移动,不能进行旋转;
-
一步:某一棋子做任意步移动后的结果;
-
子布局:某一布局通过一步移动可以得到的布局称为子布局;
-
性质:布局A是布局B的子布局,同时必有布局B是布局A的子布局;
-
相邻布局:两布局互为对方子布局时,两者为相邻布局;
步的举例
标准情况
标准布局:存在5个2 x 1(或1 x 2),4个1 x 1棋子的合法华容道布局(363480种)
非标准布局:除标准布局外的全部合法华容道布局(28971018种)
编码
合法华容道均有编码,长度9位,每一位是单个16进制数(0~9与A~F);同一布局只能有唯一编码,同一编码亦对应唯一布局,即编码与布局一一对应;
位置编号
2 x 2棋子的左上角在棋盘中的位置编号有12种情况,对应编码分别为:0、1、2、4、5、6、8、9、A(10)、C(12)、D(13)、E(14),将其置于编码第一位;剩余8位十六进制位储存其他棋子信息。
其余棋子(空格此时暂时视为棋子)按从左到右,从上到下的顺序排列(取左上角排序)
它们对应的代号(二进制)如下:
棋子类型 | 代号 |
---|---|
空格 | 00 |
1 x 2 | 01 |
2 x 1 | 10 |
1 x 1 | 11 |
十六进制可按位转为二进制,对应关系如下:
十六进制 | 二进制 | 十进制 |
---|---|---|
0 | 0000 | 0 |
1 | 0001 | 1 |
2 | 0010 | 2 |
3 | 0011 | 3 |
4 | 0100 | 4 |
5 | 0101 | 5 |
6 | 0110 | 6 |
7 | 0111 | 7 |
8 | 1000 | 8 |
9 | 1001 | 9 |
A | 1010 | 10 |
B | 1011 | 11 |
C | 1100 | 12 |
D | 1101 | 13 |
E | 1110 | 14 |
F | 1111 | 15 |
8个十六进制位相当于32个二进制位,由于每个棋子占用2个二进制位,因此最多储存16个棋子信息;将其依次填入,若有空余则补0填;按此操作即可将布局转化为编码,规定编码最后的0可以省略。
编码举例
例1:
2 x 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 补0 | ||||
0001 | 10 | 10 | 10 | 01 | 10 | 11 | 11 | 11 | 00 | 00 | 11 | 00 | 00 | 00 | 00 | 00 |
1 | A | 9 | B | F | 0 | C | 0 | 0 |
例2:
2 x 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 补0 | ||||
0100 | 11 | 11 | 11 | 10 | 10 | 10 | 00 | 01 | 00 | 11 | 01 | 00 | 00 | 00 | 00 | 00 |
4 | F | E | A | 1 | 3 | 4 | 0 | 0 |
例3:
2 x 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 补0 | ||
0101 | 11 | 01 | 11 | 00 | 00 | 00 | 00 | 10 | 11 | 11 | 10 | 00 | 00 | 00 | 00 | 00 |
5 | D | C | 0 | 2 | F | 8 | 0 | 0 |
分类
由于共有29334498种布局,将它们从小到大排列,进而得到唯一的id(0 ~ 29334497);
摆列方式分类
将2 x 1(1 x 2)的数量称为jiang_num,1 x 1的数量称为bing_num;
据此可分为64种情况,统计如下:
jiang_num | bing_num | 数量 |
---|---|---|
0 | 0 | 12 |
0 | 1 | 192 |
0 | 2 | 1440 |
0 | 3 | 6720 |
0 | 4 | 21840 |
0 | 5 | 52416 |
0 | 6 | 96096 |
0 | 7 | 137280 |
0 | 8 | 154440 |
0 | 9 | 137280 |
0 | 10 | 96096 |
0 | 11 | 52416 |
0 | 12 | 21840 |
0 | 13 | 6720 |
0 | 14 | 1440 |
1 | 0 | 256 |
1 | 1 | 3584 |
1 | 2 | 23296 |
1 | 3 | 93184 |
1 | 4 | 256256 |
1 | 5 | 512512 |
1 | 6 | 768768 |
1 | 7 | 878592 |
1 | 8 | 768768 |
1 | 9 | 512512 |
1 | 10 | 256256 |
1 | 11 | 93184 |
1 | 12 | 23296 |
2 | 0 | 2138 |
2 | 1 | 25656 |
2 | 2 | 141108 |
2 | 3 | 470360 |
2 | 4 | 1058310 |
2 | 5 | 1693296 |
2 | 6 | 1975512 |
2 | 7 | 1693296 |
2 | 8 | 1058310 |
2 | 9 | 470360 |
2 | 10 | 141108 |
3 | 0 | 8974 |
3 | 1 | 89740 |
3 | 2 | 403830 |
3 | 3 | 1076880 |
3 | 4 | 1884540 |
3 | 5 | 2261448 |
3 | 6 | 1884540 |
3 | 7 | 1076880 |
3 | 8 | 403830 |
4 | 0 | 20224 |
4 | 1 | 161792 |
4 | 2 | 566272 |
4 | 3 | 1132544 |
4 | 4 | 1415680 |
4 | 5 | 1132544 |
4 | 6 | 566272 |
5 | 0 | 24232 |
5 | 1 | 145392 |
5 | 2 | 363480 |
5 | 3 | 484640 |
5 | 4 | 363480 |
6 | 0 | 14330 |
6 | 1 | 57320 |
6 | 2 | 85980 |
7 | 0 | 3508 |
进而,将2 x 1的数量称为style_num,于是有style_num恒小于或等于jiang_num;
此时可分出203种情况(注意不存在 jiang_num-bing_num-style_num = 7-0-0 的情况):
群
定义:群是有限个不同布局的集合,该集合中任意一个布局无论如何移动,其结果仍在该群内;
性质:群是封闭的,群中所有元素构成一个关系网;
最简性:只需群中任意一个布局,即可复原出群中的所有元素;
按群继续分类
对于一个特定的 jiang_num-bing_num-style_num 分组,可拆分出n个群;将分出的群按元素数量从大到小排列,若存在元素数量相同的群,则取其中的最小元素排序;对这些群进行编号得0 ~ (n - 1) 共n个群,编号记为group_num;
因而对于某一群,存在一个唯一编号 jiang_num-bing_num-style_num-group_num ;由于群中的元素个数是确定的,将其中的元素按编码从小到大排列,其中的元素可得唯一编号group_index;
所以,对于任意布局,可得唯一编号 jiang_num-bing_num-style_num-group_num-group_index;
层级关系
最少步数:从布局A到布局B所需最少的移动步骤
最短路径:从布局A到布局B,所有满足最少步数的路径(最少路径可能不止一条);